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A practical route to 3-aryl-3-azetidinyl acetic acid esters is developed. The key step involves the rho-
dium(I)-catalysed conjugate addition of an organoboron reagent to an a,b-unsaturated alkene. Elabora-
tion of one conjugate addition product to give a novel spiroazetidine ring system is also described.
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Scheme 3. Reagents and conditions: (i) EtO2CCH2P(O)(OEt)2, NaH, THF, rt, 72%; (ii)
PhB(OH)2 (2 equiv), [Rh(cod)Cl]2 (0.03 equiv), 1.5 M KOH (2 equiv), 1,4-dioxane, rt,
1 h, 85%.
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Scheme 1. An established method for 3,3-disubstituted azetidine synthesis.
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Scheme 2. Proposed synthesis of 3-aryl-3-azetidinyl acetic acid esters.
Despite their increasing utility in drug discovery, substituted
azetidines have received considerably less attention than their lar-
ger ring pyrrolidine and piperidine analogs.1 This is in large part
due to the greater difficulty associated with the synthesis of this
strained heterocycle.

As part of a kinase inhibitor programme, we required efficient
entry into 3,3-disubstituted azetidines of type 1. These moieties
are traditionally synthesised via reduction of the corresponding
azetidine-2-ones, which in turn are prepared from poorly accessi-
ble 2-aryl-2-cyanoacetates (Scheme 1).2,3 The variety of azetidines
accessible by this route is clearly limited by the highly reactive re-
agents used in a number of the steps.

We envisioned a more direct approach into this class of com-
pound that uses the Rh(I)-catalysed boronic acid conjugate addi-
tion protocol pioneered by Hayashi and Miyaura.4,5 This
methodology was predicted to be compatible with a wide range
of aromatic substituents (R1) and provide 3-aryl-3-azetidinyl acetic
acid ester derivatives 2 possessing a valuable ester group for fur-
ther synthetic manipulation (Scheme 2).

Investigations began with the reaction of phenylboronic acid
with a,b-unsaturated ester 3, easily prepared by Horner–Wads-
worth–Emmons reaction from N-Boc-3-azetidinone (Scheme 3).6

Encouragingly, the desired conjugate addition adduct 4, was ob-
tained in 85% yield after stirring at room temperature for one hour
in the presence of chloro(1,5-cyclooctadiene)rhodium(I) dimer.7

Further similar experiments were used to explore the scope and
limitations of the process and the results are summarised in Table
1.8,9 In general, the reactions were carried out under microwave
heating at 100 �C for 5 min.10 The steric bulk of the N-protecting
group in unsaturated ester 3 did not appear to hinder the reaction.
Indeed, the reaction was also successful when the larger diphenyl-
methyl N-protection, a commonly used protecting group for the
azetidine ring, was used (Table 1, entry 2).
ll rights reserved.
As expected, the reaction worked well with a range of boronic
acids that incorporated both electron-donating and electron-with-
drawing groups. Boronic esters are equally competent partners in
the coupling reaction (entry 14). We obtained a poor yield of 36%
in the coupling reaction with 3-nitrophenylboronic acid under



Table 1
Rhodium-catalysed coupling of alkene 3 or 5 with aromatic boronic acids/esters
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Entry Alkene Boronic acid/ester Product Methoda Yieldb

(%)

1 3
B(OH)2

MeO
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MeO

6
A 90

2 5
B(OH)2

MeO
N
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7 A 73

3 3
B(OH)2
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O
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Table 1 (continued)

Entry Alkene Boronic acid/ester Product Methoda Yieldb

(%)

12 3
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A 83

13 3

B(OH)2

H
N
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H
N

18

A 74

14 3 B
O

O
BocN

CO2Et
4

A 74

a Method A: ArB(OH)2 (2 equiv), [Rh(cod)Cl]2 (0.03 equiv), 1.5 M KOH (2 equiv),
1,4-dioxane, microwave (300 W, CEM Discover), 100 �C, 5 min. Method B:
ArB(OH)2 (3 equiv), [Rh(cod)Cl]2 (0.03 equiv), K2CO3 (3 equiv), 2-propanol
(3 equiv), THF, 60 �C, conventional heating, 2 h.

b Isolated yields based on alkene 3 or 5.
c Carried out at rt, overnight.
d 5 equiv of boronic acid used.
e % Conversion based on LC–MS (AUC).
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our standard coupling conditions (Table 1, method A). However, it
is known that rhodium-catalysed protodeboronation of the boronic
acid can be a significant competing side reaction when employing
certain electron-deficient boronic acids.11–14 This yield was im-
proved from 36% to 73% by adopting conditions similar to those re-
ported by Parker (entry 5).11 Here, the replacement of water with
iso-propanol, minimizes the water-assisted protodeboronation. In
our studies, we found that three equivalents of the boronic acid
were still necessary to consume the starting material.

We were pleased to observe smooth coupling with a sterically
hindered boronic acid (entry 7) in light of the poorer results re-
ported with ortho-substituted boronic acids by Iyer et al. in their
related studies.10 The anhydrous Parker conditions did not provide
any advantage in this case with respect to reducing the amount of
boronic acid used. The reaction is highly functional group tolerant.
Boronic acids containing a bromine atom (entry 8) and unpro-
tected aniline, phenol and ketone functionalities (entries 3, 4 and
6) were all coupled smoothly and in high yield. Remarkably, 3-bro-
momethylphenylboronic acid (entry 9) was also a suitable cou-
pling partner, furnishing the desired conjugate addition product
14 in 65% isolated yield.

To the best of our knowledge, reaction conditions that inhibit
the fast competing protodeboronation observed when employing
pyridine boronic acids have yet to be developed.15 Therefore the
low yield for entry 10 (Table 1) was expected. Despite this problem
with pyridines, certain 3-heteroaryl-3-alkyl azetidines can be pre-
pared in good yield from heteroaromatic boronic acids possessing
heteroatoms further removed from the boron atom (entries 11–
13).

The conjugate addition adducts can be easily converted into
simple 3-aryl-3-alkyl azetidines. For example, treatment of the
aldehyde derived from ester 13 with Wilkinson’s catalyst gave
3-(3-bromophenyl)-3-methylazetidine 19 after N-Boc deprotection
(Scheme 4).

The conjugate addition adducts could also be of interest in the
area of Diversity Oriented Synthesis.16,17 For example, cyclisation
of the acid derivative of adduct 20 gave the previously unreported
spiroazetidine 21 in protected form (Scheme 5).
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Scheme 4. Reagents and conditions: (i) DIBAL-H, DCM, �78 �C, 1 h, 81%; (ii)
ClRh(PPh3)3, toluene, 4 h, reflux; (iii) TFA, Et3SiH, DCM, 44% (two steps).
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Scheme 5. Reagents and conditions: (i) indole-4-boronic acid, cat. [Rh(cod)Cl]2, aq
KOH, dioxane, 100 �C, microwave, 84%; (ii) 5 M KOH, 1,4-dioxane, reflux; (iii)
polyphosphoric acid, 100 �C, 47% (two steps).
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In summary, we have developed a practical and efficient route
to 3-aryl-3-azetidinyl acetic acid esters by rhodium-catalysed con-
jugate addition of organoboron reagents to a,b-unsaturated esters
derived from N-protected-3-azetidinone. The wide scope of the
procedure allowed for the preparation of a range of 3,3-disubsti-
tuted azetidines for biological testing in our research programmes.
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